

Research Article Received: December 6, 2023

Accepted: January 15, 2024

ISSN 2658-5553 Published: February 9, 2024

Dependence of the fundamental vibration frequency of a semibraced beam truss on the number of panels

Kirsanov, Mikhail Nikolaevich¹ Munitsyn, Alexander Ivanovich¹

¹ Moscow Power Engineering Institute, Moscow, Russian Federation; <u>c216@ya.ru</u> (K.M.N.); munitsyn@rambler.ru (M.A.I.)

Correspondence: *email c216@ya.ru; contact phone +7(965)183-35-34

Keywords:

Truss; Natural oscillation frequency; Induction; Maple; Semi-braced truss; Dunkerley method

The object of research is a new scheme of a flat statically determinate regular beam truss with a semi-braced double lattice. An algorithm has been developed for deriving the analytical dependence of the first natural frequency of oscillations of a truss on its size, mass, and number of panels. The mass of the truss is concentrated in its nodes, the rods are elastic, and the nodes oscillate vertically. **Method**. To calculate the stiffness of the truss, the Maxwell-Mohr's formula is used. Generalization of solutions to the case of an arbitrary number of panels is performed by the induction method in the Maple computer mathematics systems. **Results**. The solution with coefficients of the type of polynomial in the number of panels is compared with the well-known Dunkerley solution and the numerical one obtained as the first frequency of the entire frequency spectrum. It is shown that the proposed method provides not only a more compact, but also a more accurate formula for calculating the frequency. As the number of panels increases, the accuracy of the analytical solution increases.

1 Введение / Introduction

Одной из наиболее востребованной в инженерной практике динамической характеристикой конструкции является ее основная (наименьшая) собственная частота. Как правило эта величина рассчитывается численно с применением стандартных инженерных пакетов [1], [2]. С развитием систем компьютерной математики (Maple, Mathematica, Derive [3]) появилась возможность находить аналитические решения некоторых задач строительной механики. Особенно эффектны такие решения для регулярных систем, содержащих периодически повторяющиеся элементы структуры. В [4] методом индукции с применением системы символьной математики Maple получены формулы зависимости прогиба плоских ферм от числа панелей. В [5], [6] решены задачи о первой собственной частоте плоских ферм с произвольным числом панелей в предположении о концентрации массы фермы в узлах. Для этого использовался метод Донкерлея [7]. Этот метод дает несколько заниженное значение первой частоты. Более сложное, но более точное решение задачи о первой частоте фермы получается приближенным энергетическим методом Рэлея [8]. который дает верхнюю оценку искомой частоты. В отличие от метода Рэлея, для метода Донкерлея не требуется знание о возможной форме колебания с первой частотой. Зависимость решения от порядка регулярности дает метод индукции, что существенно расширяет область применимости аналитических решений. Проблемы существования и расчета регулярных статически определимых ферм изучены в [9], [10]. В справочнике [11] приведены схемы плоских регулярных статически определимых ферм арок, консолей, рам и даны формулы для расчета их прогиба. Аналитическое решение задачи о частоте колебаний внешне статически неопределимой фермы получена в [12]. В [13] найдено численное решение задачи о деформации Г-образной конструкции из тонкостенных стержней в программном комплексе ABAQUS с учетом конструктивных особенностей элементов узлового соединения. Простая формула для оценки первой частоты собственных колебаний пространственной консольной фермы выведена в [14]. В [15] получена формула зависимости частоты колебаний плоской фермы типа Финка от числа

Kirsanov, M.; Munitsyn, A.

панелей. Решение задачи о колебании шпренгельной фермы балочного типа приведено в [16]. Формула для нижней оценки собственных колебаний плоской регулярной балочной фермы с прямолинейным верхним поясом получена в [17]. Аналитическая оценка основной частоты колебаний Г-образной пространственной фермы в системе Maple получена в [18]. В [19] аналитическая оценка первой частоты собственных колебаний регулярной решетчатой фермы выведена методом индукции. Формулы для расчета деформаций прогиба плоской регулярной рамы с произвольным числом панелей найдены в [20]. Методом начальных функций в [21], [22] получены некоторые аналитические решения задач строительной механики для элементов конструкций. Аналитическое решение для расчета прямоугольных ортотропных пластин с трещинами найдено в [23] на базе системы символьной математики Maple.

В настоящей работе предлагается новая схема плоской статически определимой балочной фермы с полураскосной двойной решеткой. Методом Донкерлея выводится аналитическая зависимость первой частоты собственных колебаний. Решение сравнивается с упрощенным вариантом метода Донкерлея [24] и численным решением, полученным для системы с многими степенями свободы.

2 Материалы и методы / Materials and Methods

2.1 Конструкция фермы и усилия в стержнях

Рассматриваемая ферма представляет собой плоскую балочную конструкцию высотой 3h и длиной 2(n + 1)a (рис. 1), где 2n — число панелей в средней части фермы. Раскосы в верхней

части, закрепленные на стойках, имеют длину $c = \sqrt{a^2 + h^2}$, в нижней части — длину 2c.

Рис. 1 – Схема фермы и нумерация узлов, *n*=3 Fig. 1 –Truss scheme and node numbering, *n*=3

Ферма имеет K = 6(n+1) внутренних узлов и $\eta = 12(n+1)$ стержней, включая три стержня, моделирующие левую подвижную и правую неподвижную опоры. Усилия в стержнях, необходимые для расчета жесткости конструкции, определяются из системы уравнений равновесия узлов.

Схема соединений стержней в узлы и координаты узлов в решетке вносятся в программу, написанную на языке символьной математики Maple [25]. Начало координат выбирается в левой подвижной опоре *A*. Фрагмент программы ввода координат на языке компьютерной математики Maple с использованием циклов с параметрически заданной длиной имеет вид:

```
> for i to 2*n+3 do x[i]:=a*(i-1); y[i]:=0; end:
> for i to 2*n+1 do x[i+2*n+3]:=i*a; y[i+2*n+3]:=3*h; end:
> for i to n+1 do x[i+4*n+4]:=a*(i-1):y[4*n+i+4]:=2*h:
> x[i+5*n+5]:=a*(i+n+1):y[5*n+i+5]:=2*h:end:
```

Для ввода порядка соединения стержней в узлах используются специальные упорядоченные списки номеров вершин концов соответствующих стержней. Программа ввода информации о стержнях поясов имеет вид:

```
> for i to 2*n+2 do N[i]:=[i,i+1];end:
```

```
> for i to 2*n do N[i+2*n+2]:=[i+2*n+3,i+2*n+4]; end:
```

Элементы списков N[i] — это номера концов стержня і. Матрица системы разрешающих уравнений состоит из направляющих косинусов усилий, вычисленных по данным о координатах концевых узлов стержней.

Kirsanov, M.; Munitsyn, A.

2.2 Метод Донкерлея

Простейшей и наиболее распространенной в инженерных расчетах инерционной моделью фермы является ферма с массой, равномерно распределенной по ее узлам. Формула Донкерлея для первой частоты собственных колебаний находится по формуле:

$$\omega_D^{-2} = \sum_{j=1}^K \omega_j^{-2}.$$
 (1)

Здесь введено обозначение ω_{*j*} для парциальной частоты колебаний массы μ в узле *j* по вертикали. Горизонтальные колебания узлов балочной фермы незначительны и в этом подходе не учитываются.

Уравнение колебаний одной отдельной массы имеет простой скалярный вид:

$$\mu \ddot{u}_j + d_j u_j = 0, \quad j = 1, ..., K,$$

где u_j — смещение массы, d_j — коэффициент жесткости отдельного узла *j*. Частота колебаний парциальной массы имеет вид: $\omega_j = \sqrt{d_j / \mu}$. По формуле Максвелла — Мора вычисляется жесткость d_j , которая является обратной величиной податливости:

$$\delta_j = 1/d_j = \sum_{\alpha=1}^{\eta} \left(\tilde{S}_{\alpha}^{(j)} \right)^2 l_{\alpha} / (EF).$$

Согласно (1):

$$\omega_D^{-2} = \mu \sum_{j=1}^K \delta_j = \mu \Delta_n.$$
⁽²⁾

Чтобы получить зависимость решения от количества панелей *n* в фермы требуется метод индукции. Расчетом усилий в стержнях с использованием формулы Максвелла – Мора коэффициент Δ_n в (2) для различных чисел панелей *n*=1,2,.... находится в виде:

$$\begin{split} \Delta_1 &= (38a^3 + 114c^3 + 597h^3) / (16h^2 EF) \\ \Delta_2 &= (85a^3 + 147c^3 + 680h^3) / (12h^2 EF) \\ \Delta_3 &= (12102a^3 + 9666c^3 + 39523h^3) / (512h^2 EF) \\ \Delta_4 &= (73466a^3 + 34350c^3 + 127551h^3) / (1280h^2 EF), \\ \Delta_5 &= (1516978a^3 + 444198c^3 + 1514881h^3) / (12288h^2 EF), \ldots \end{split}$$

Для выявления закономерности в коэффициентах при степенях размеров *a, c, h* используются операторы пакета genfunk системы Maple. По данным расчетов десяти ферм с последовательно увеличивающимся числом панелей можно найти общие члены коэффициентов в этих выражениях:

$$\Delta_n = (C_1 a^3 + C_2 c^3 + C_3 h^3) / (h^2 EF).$$
(3)

Коэффициенты находятся как решения рекуррентных линейных однородных уравнений:

$$\begin{split} C_{1} &= (864n^{5} \cdot 4^{n} + 2970n^{4} \cdot 4^{n} + 720(2^{n} \cdot 7 - 3(-1)^{n})2^{n}n^{3} + \\ &+ 5(4^{n} \cdot 1137 - 1134(-2)^{n} - 192)n^{2} + 1380(-2)^{n} + \\ &+ (4^{n} \cdot 10341 - 1200(-2)^{n} - 1530)n + 4^{n} \cdot 6730 - 820) / (4^{n} \cdot 7290(n+1)), \\ C_{2} &= (4^{n} \cdot 108n^{3} + (6(-2)^{n} + 4^{n} \cdot 645 + 96)n^{2} - 20(-2)^{n} + \\ &+ (4^{n} \cdot 1011 - 24(-2)^{n} + 138)n + 4544^{n} + 52) / ((n+1) \cdot 4^{n} \cdot 162), \\ C_{3} &= (324n^{3} \cdot 4^{n} + (102(-2)^{n} + 8949 \cdot 4^{n} + 1812)n^{2} + 200(-2)^{n} + \\ &+ (96(-2)^{n} + 4^{n} \cdot 17376 + 2661)n + 8426 \cdot 4^{n} + 1094) / (4^{n} \cdot 486(n+1)). \end{split}$$

Окончательное выражение зависимости нижней границы первой частоты от геометрических параметров конструкции, включая количество панелей в вертикальной и горизонтальной частях фермы, примет вид:

$$\omega_D = h \sqrt{\frac{EF}{\mu \left(C_1 a^3 + C_2 c^3 + C_3 h^3 \right)}}.$$
(5)

2.3 Упрощенный вариант метода Донкерлея

Для расчета частоты по методу Донкерлея в аналитической форме требуется находить конечную сумму (1) парциальных частот. Аналитическое решение этой задачи не всегда бывает возможным или дает громоздкий и неудобный для практических расчетов результат. Упрощение может быть достигнуто, если сумму вычислять по значению максимальной парциальной частоты, пользуясь формулой для площади треугольника [24]:

$$\omega_D^{-2} = \mu \sum_{j=1}^K \delta_j = \mu \delta^{\max} K / 2 = \mu \Delta_*,$$
(6)

где δ^{\max} — наибольшее по всем узлам значение прогиба δ_j . Для рассматриваемой фермы можно предположить, что максимальный прогиб будет либо в среднем узле верхнего пояса с номером 3n+4, либо в среднем узле нижнего пояса с номером n+2 (рис. 1). Численный счет показывает, что для этого метода лучше всего подходит узел в верхнем поясе.

Рассчитывая коэффициент Δ_* для разных чисел панелей, получаем

$$\Delta_{*1} = 3(2a^{3} + 6c^{3} + 21h^{3}) / (4h^{2}EF)$$

$$\Delta_{*2} = 9(14a^{3} + 42c^{3} + 109h^{3}) / (32h^{2}EF)$$

$$\Delta_{*3} = 9(50a^{3} + 54c^{3} + 135h^{3}) / (32h^{2}EF)$$

$$\Delta_{*4} = 15(1318a^{3} + 786c^{3} + 1797h^{3}) / (512h^{2}EF),$$

$$\Delta_{*5} = 9(10246a^{3} + 3378c^{3} + 7333h^{3}) / (1024h^{2}EF),...$$
(7)

Обобщая (7) на произвольное число панелей, получаем несколько более простой, чем (4) вид коэффициентов в (5):

$$C_{1} = (n+1)(18n^{2} \cdot 4^{n}(n+1) - 48n(-2)^{n} - 4^{n} \cdot 93n + 66(-2)^{n} - 14 + 4^{n} \cdot 191) / (4^{n} \cdot 162),$$

$$C_{2} = (n+1)(3n \cdot 4^{n} + 10(-2)^{n} + 15 \cdot 4^{n} + 2)) / (4^{n} \cdot 6),$$

$$C_{3} = (n+1)(3n \cdot 4^{n} + 18(-1)^{n} 2^{n} + 50 \cdot 4^{n} + 13) / (4^{n} \cdot 6).$$
(8)

3 Результаты и обсуждение / Results and Discussion

3.1 Итоги

Для сравнения результатов двух аналитических методов и оценки их степени приближения к численному решению, полученному для фермы с многими степенями свободы, приведем пример расчета собственной частоты колебаний ферм с модулем упругости материала стержней

 $E = 2.1 \cdot 10^5$ МПа, массами в узлах $\mu = 200 \ \kappa c$ и размерами: $a = 3 \ m, h = 2 \ m$. Площадь

поперечных сечений стержней $F = 9 \ cM^2$. В численном решении при нахождении собственных чисел используется стандартный оператор *Eigenvalues* системы Maple из специализированного пакета линейной алгебры *LinearAlgebra*. На рисунке 2 показаны кривые зависимости первой частоты от числа панелей, рассчитанные численно и по двум аналитическим методам. Конкретный пример показывает, что метод Донкерлея, как и ожидалось, дает заниженное значение собственной частоты [26], [27]. Для упрощенного метода Донкерлея погрешность расчета по сравнению с численным решением оказывается меньшей.

Рис. 2 – Зависимость частоты от количества панелей. Численное решение ω_1 и аналитические оценки ω_D , и ω_*

Fig. 2 – Frequency dependence on the number of panels. Numerical solution ω_1 and analytical assessments ω_D , and ω_* .

Для сравнения аналитических решений с численным, полученным как минимальная частота спектра, вводятся относительные погрешности $\varepsilon_D = (\omega_1 - \omega_D)/\omega_1$, $\varepsilon_* = |\omega_1 - \omega_*|/\omega_1$. На рисунке 4 показано, что погрешность упрощенного метода Донкерлея в несколько раз меньше оригинального метода. С увеличением числа панелей погрешность обоих методов уменьшается. Для метода Донкерлея это уменьшение монотонное, для упрощенного варианта изменение погрешности скачкообразное. Погрешность в обоих случаях тем меньше, чем меньше высота конструкции. Для упрощенного метода это справедливо при *n*>2.

Kirsanov, M.; Munitsyn, A.

Dependence of the fundamental vibration frequency of a semi-braced beam truss on the number of panels; 2024; AlfaBuild; **30** Article No 3006. doi: 10.57728/ALF.30.6

Рис. 3 – Погрешности аналитических решений в зависимости от количества панелей Fig. 3 – Errors of analytical solutions depending on the number of panels

4 Выводы/ Conclusions

Основные результаты работы:

1. Предложена новая схема плоской статически определимой фермы регулярного типа.

2. Разработана математическая модель для расчета напряженного состояния и первой собственной частоты колебаний в аналитическом виде для произвольного числа панелей.

2. Двумя методами выведены формулы для основной частоты.

3. Показано, что упрощенное решение дает не только более компактную, но и более точную формулу для частоты по сравнению с численным решением.

References

- 1 Ignatyev, A. V. and Ignatyev, V.A. (2016) On the Efficiency of the Finite Element Method in the Form of the Classical Mixed Method. *Procedia Engineering*, Elsevier Ltd, **150**, 1760–1765. https://doi.org/10.1016/J.PROENG.2016.07.167.
- 2 Vatin, N., Havula, J., Martikainen, L., Sinelnikov, A.S., Orlova, A. V. and Salamakhin, S. V. (2014) Thin-Walled Cross-Sections and Their Joints: Tests and FEM-Modelling. *Advanced Materials Research*, 945–949, 1211–1215. https://doi.org/10.4028/www.scientific.net/AMR.945-949.1211.
- 3 Zotos, K. (2007) Performance Comparison of Maple and Mathematica. *Applied Mathematics and Computation*, Elsevier, **188**, 1426–1429. https://doi.org/10.1016/j.amc.2006.11.008.
- 4 Komerzan, E. V., Lushnov, N.A. and Osipova, T.S. (2022) Analytical Calculation of the Deflection of a Planar Truss with an Arbitrary Number of Panels. *Structural mechanics and structures*, **33**, 17–25. https://doi.org/10.36622/VSTU.2022.33.2.002.
- 5 Petrenko, V.F. (2021) The Natural Frequency of a Two-Span Truss. *AlfaBuild*, 2001. https://doi.org/10.34910/ALF.20.1.

6 Vychuzhina, Z.K. (2023) Calculation of the Flat Truss Natural Oscillations First Frequency. Kirsanov, M.; Munitsyn, A.

Dependence of the fundamental vibration frequency of a semi-braced beam truss on the number of panels; 2024; AlfaBuild; **30** Article No 3006. doi: 10.57728/ALF.30.6

Structural Mechanics and Structures, Voronezh State Technical University, **38**, 136–142. https://doi.org/10.36622/VSTU.2023.38.3.013.

- 7 Low, K.H. (2000) A Modified Dunkerley Formula for Eigenfrequencies of Beams Carrying Concentrated Masses. *International Journal of Mechanical Sciences*, Pergamon, **42**, 1287–1305. https://doi.org/10.1016/S0020-7403(99)00049-1.
- 8 Kirsanov, M.N. (2023) Model of a Hexagonal Prismatic Truss. Oscillation Frequency Spectrum. *Construction of Unique Buildings and Structures*, **106**, 10601. https://doi.org/10.4123/CUBS.106.01.
- 9 Hutchinson, R.G. and Fleck, N.A. (2005) Microarchitectured Cellular Solids The Hunt for Statically Determinate Periodic Trusses. *ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik*, **85**, 607–617. https://doi.org/10.1002/zamm.200410208.
- 10 Hutchinson, R.G. and Fleck, N.A. (2006) The Structural Performance of the Periodic Truss. *Journal* of the Mechanics and Physics of Solids, Pergamon, **54**, 756–782. https://doi.org/10.1016/j.jmps.2005.10.008.
- 11 Kirsanov, M. (2020) Trussed Frames and Arches: Schemes and Formulas. Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, GB. https://cambridgescholars.com/product/978-1-5275-5976-9.
- 12 Ilyushin, A.S. (2019) The Formula for Calculating the Deflection of a Compound Externally Statically Indeterminate Frame. *Structural mechanics and structures*, **22**, 29–38. https://elibrary.ru/item.asp?id=41201106.
- 13 Rybakov, V.A., Jos, V.A. (2022) Stress State of Γ-Shaped Thin-Walled Rod Joints in Bending Torsion. *Construction of Unique Buildings and Structures*, **99**, 9903. https://doi.org/10.4123/CUBS.99.3.
- 14 Sviridenko, O. V and Komerzan, E. V. (2022) The Dependence of the Natural Oscillation Frequency of the Console Truss on the Number of Panels. *Construction of Unique Buildings and Structures*, **101**, 10101. https://doi.org/10.4123/CUBS.101.1.
- 15 Petrichenko, E.A. (2020) Lower Bound of the Natural Oscillation Frequency of the Fink Truss. *Structural Mechanics and Structures*, **26**, 21–29. https://www.elibrary.ru/download/elibrary_44110287_71394021.pdf.
- 16 Manukalo, A.S. (2023) Analysis of a Planar Sprengel Truss First Frequency Natural Oscillations Value. *Structural Mechanics and Structures*, **37**, 54–60. https://doi.org/10.36622/VSTU.2023.37.2.006.
- 17 Shchigol, E.D. (2023) The Formula for the Lower Estimate of the Natural Oscillations of a Flat Regular Girder Truss with a Rectilinear Upper Belt. *Structural Mechanics and Structures*, **37**, 46– 53. https://doi.org/10.36622/VSTU.2023.37.2.005.
- 18 Komerzan, E. V., Maslov, A.N. (2023) Estimation of the L-Shaped Spatial Truss Fundamental Frequency Oscillations. *Structural Mechanics and Structures*, **37**, 35–45. https://doi.org/10.36622/VSTU.2023.37.2.004.
- 19 Komerzan, E. V., Maslov, A.N. (2023) Analytical Evaluation of a Regular Truss Natural Oscillations Fundamental Frequency. *Structural Mechanics and Structures*, **37**, 17–26. https://doi.org/10.36622/VSTU.2023.37.2.002.
- 20 Ivanitskii, A.D. (2022) Formulas for Calculating Deformations of a Planar Frame. *Structural mechanics and structures*, Voronezh State Technical University, **34**, 90–98. https://doi.org/10.36622/VSTU.2022.34.3.007.
- 21 Matrosov, A. V. (2022) An Exact Analytical Solution for a Free-Supported Micropolar Rectangle by the Method of Initial Functions. *Zeitschrift fur Angewandte Mathematik und Physik*, Birkhauser, 73. https://doi.org/10.1007/S00033-022-01714-Y.
- 22 Matrosov, A. V. (2019) Computational Peculiarities of the Method of Initial Functions. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, Springer Verlag, **11619 LNCS**, 37–51. https://doi.org/10.1007/978-3-030-24289-3_4.
- 23 Goloskokov, D.P. and Matrosov, A. V. (2018) Approximate Analytical Approach in Analyzing an Orthotropic Rectangular Plate with a Crack. *Materials Physics and Mechanics*, Institute of Problems of Mechanical Engineering, **36**, 137–141. https://doi.org/10.18720/MPM.3612018_15.
- 24 Kirsanov, M. (2023) Simplified Dunkerley Method for Estimating the First Oscillation Frequency of a Regular Truss. *Construction of Unique Buildings and Structures*, **108**. https://doi.org/10.4123/CUBS.108.1.

Kirsanov, M.; Munitsyn, A.

Dependence of the fundamental vibration frequency of a semi-braced beam truss on the number of panels; 2024; AlfaBuild; **30** Article No 3006. doi: 10.57728/ALF.30.6

- 25 Buka-Vaivade, K., Kirsanov, M.N. and Serdjuks, D.O. (2020) Calculation of Deformations of a Cantilever-Frame Planar Truss Model with an Arbitrary Number of Panels. *Vestnik MGSU*, **4**, 510–517. https://doi.org/10.22227/1997-0935.2020.4.510-517.
- 26 Maslov, A.N. (2023) The First Natural Frequency of a Planar Regular Truss. Analytical Solution. *Construction of Unique Buildings and Structures*, **110**, 10912–10912. https://doi.org/10.4123/CUBS.109.12.
- 27 Luong, C.L. and Kirsanov, M.N. (2024) Effect of Truss Height on the Safe Frequency Region of a Statically Determined Flat Truss. *Construction of Unique Buildings and Structures*, **111**, 11003–11003. https://doi.org/10.4123/CUBS.110.3.