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Abstract: 

The object of the study is a planar statically determinate truss of the regular type. The truss has 
a sprengel grid. The load evenly distributed over the nodes of the upper belt is considered. The purpose 
of the work is to derive an analytical dependence of the deflection of the structure on the number of 
panels. Method. By the method of induction, based on the results of calculations of a series of similar 
trusses with a consistently increasing number of panels, the desired dependence is derived. All 
transformations and the solution of the system of linear equations for determining the forces in the rods 
are performed in the Maple computer mathematics package. The deflection is calculated using the 
Maxwell-Mohr formula. Results. The formula for the dependence of the deflection on the number of 
panels contains ten coefficients obtained from the solution of recurrent equations. Graphs of the 
dependence of the deflection and horizontal displacement of the movable support under the action of a 
uniform load along the upper belt are constructed. The asymptotics of the solutions is found.   

1 Introduction 

The calculation of the strength, stability and deformations of trusses in the design process is 
practically carried out by numerical methods in specialized packages based on the finite element method 
[1]–[3]. In cases where the design contains many discrete elements, such as rods in trusses, numerical 
methods are subject to such a difficult-to-eliminate disadvantage as the accumulation of rounding errors. 
Analytical methods for solving problems have become more real with the development of computer 
mathematics systems (Mathematica [4], Maple [5]–[8], Reduce, Derive, etc.). At the same time, the 
problem of the universality of formulas for solving engineering problems becomes a very important 
problem. If the mathematics obtained in any system is intended only for one structure and type of load, 
then its value is low. One of the tasks in the design is to choose the optimal option for any parameter (or 
group of parameters). Often, the most optimal truss scheme may not be the initially selected scheme, 
but a truss with fewer or more panels. Here, it automatically becomes important to enter the order of the 
structures (the number of panels, for example) into the calculation formula.  One of the most common 
methods for taking into account the order of a regular system in a calculation formula is the method of 
induction [9]–[12]. This method provides dozens of solutions for girders [13]–[21], arch [22], and lattice 
trusses. More complex solutions refer to spatial constructions of the regular type [23]. General questions 
of calculations and analysis of regular systems, as well as the problems of the existence and search for 
statically determinate structures of this type, are considered in [24], [25]. Solutions to the problems of 
oscillation of regular trusses are also known [26]–[29]. In this paper, we consider a truss scheme with a 
complex lattice of the sprengel type. The peculiarity of this scheme is the non-central location of the 
sprengel node in height, which leads to a significant complication of the solution.  
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2 Materials and Methods 

2.1 Truss scheme  

Consider a regular truss with parallel belts and a sprengel grid (Fig. 1). The truss contains n 

identical panels. Each 4a – long panel contains four 2a – long elements in the upper and lower belt, three 

h+b – high posts, four struts length 
2 2c a h= + , and two struts length

2 2d a b= + . The truss has a 

total of 12 4n = +  members. The truss is symmetrical. 

 

Fig. 1 - Truss, n=5, h<b       
 

 To calculate the deflection (vertical displacement of the middle node of the lower belt), we use 
the Maxwell – Mohr formula. The values of forces included in this formula in a statically definable 
construction can be found from the system of equations of equilibrium of nodes. To obtain an analytical 
solution, we will use the Maple computer mathematics system. To enter truss data into the program, the 
truss nodes are numbered (Figure 2). 

   
Fig. 2 - Truss, n=2 . Numbering of nodes and rods     

We will take the origin of the coordinates in the left movable support. The fragment of entering 
coordinates in the Maple language has the form 
 for i to 2*n+1 do x[i]:=2*(i-1)*a; y[i]:=0;  

                  x[i+2*n+1]:=x[i];   y[i+2*n+1]:=h+b; od: 
 for i to 2*n do   x[i+4*n+2]:=x[i]+a; y[i+4*n+2]:=b; od: 

The order of connecting the rods is set by special lists numbered by the numbers of the rods, 
containing the numbers of the ends of the rods.  

The rods of the belts are numbered as follows: 
 for i to 2*n do   N[i]:=[i,i+1]; N[i+2*n]:=[i+2*n+1,i+2*n+2];od: 

 Numbering of vertical racks 
 for i to 2*n+1 do N[i+4*n]:=[i,i+2*n+1];od: 

The truss grid is similarly encoded. 

2.2 Calculation of forces and deflection 

Based on the data on the coordinates and taking into account the structure of the joints of the rods, 
we calculate the guiding cosines of the forces included in the matrix of the system of equilibrium equations 
of the nodes. 

In the vector of the right part of the system of equations, when determining the forces from the 
action of the load, external forces are placed — vertical loads on the nodes of the upper belt:: 

2 , 2 2,..,4 2iB P i n n= = + + . 

 When determining the forces 
(1)S

 from the action of the vertical unit force on the node in the 

middle of the span (at the point n+1 of the deflection determination), only one element is distinguished 
from zero on the right side 
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2 1, 1.iB i n= = +  (1) 

The solution of the system, as well as the forces in the rods, is in symbolic form. The deflection is 
calculated using the Maxwell – Mohr formula 

( ) (1)

1

/ ( ),PS S l EF


  

=

 =  
(2) 

where ( )PS
 is the force in the rod with the number   from the action of the load distributed over the 

nodes, (1)S
 is the force from the action of a single vertical force in the node with the number 1n +  in the 

middle of the lower belt, l  is the length of the member  . The stiffness of the rods EF is taken to be the 

same. The calculation of individual trusses of different orders shows that the form of the formula for the 
deflection does not depend on n: 
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(3) 

Here the coefficients , 1,..,10iC i =  depend only on n and are determined by induction  
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(4) 

Under the influence of a vertical load, the movable hinge of the left support is displaced. To 
determine this offset, a horizontal force is applied to the node with the number 1. In the vector of the right 
part of the system of equilibrium equations for horizontal loads, odd elements are assigned. Instead of 
(1), we have 

2 1 1, 1.iB i− = =  (5) 

By induction, based on the results of calculations of only eight trusses with a consistently increasing 
number of panels, we obtain a solution for the shift value 

2 2

1 4 (2 1) / (3( ) ).Pa n n h b EF = + +  (6) 

3  Results and Discussion 

The graphical capabilities of the Maple system allow you to give a clear picture of the distribution 

of forces in the truss rods. For a truss with three panels and with dimensions 3 m,  2m, 4ma h b= = = , 

the force values related to the value P are given in Figure 3. The compressed rods are highlighted in 
blue, and the stretched ones are highlighted in red. The unstrained rods are indicated by thin black 
segments. The thickness of the lines is approximately proportional to the force modules. The distribution 
of the compressed rods in the upper belt and the bars in the side panels resembles an arch in shape. 
This indicates the need for an appropriate distribution of the stiffness of the rods. It is also characteristic 
that the most compressed rods are not in the middle of the span. On the contrary, the most stretched 
rods, as expected, are located in the middle of the lower belt. 
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Fig. 3 - Truss, n=3. Distribution of forces in the truss rods, 3,  3m,  2m,  4mn a h b= = = =  

Approximately the same distribution of forces will be at  b h  (Fig. 4). The difference is noticeable 

only in the compressed elements of the upper belt. The maximum compression forces here are 15-30% 
less. 

 
 

Fig. 4 - Truss, n=3. Distribution of forces in the truss rods, 3,  3m,  4m,  2mn a h b= = = =  

To illustrate the found dependence of the deflection on the number of panels, we construct the 

corresponding graphs for the length 2L na=  truss with the total load 0 (2 1)P n P= + . We introduce a 

relative dimensionless deflection 0' / ( )EF P L =  . Figure 3 shows the curves for this value, constructed 

according to formula (4). For all curves, the height of the truss is taken to be 10 m. Curve 1, corresponding 

to 2m,  8mb h= = , shows that such a truss (b<h) is the most rigid. As the number of panels increases, 

curves 1 and 2 converge, and this convergence depends on the parity of n. It is also obvious that the 
change in the deflection value is different depending on the ratio of b and h. At b<h, the deflection 
increases non-monotonically, and at h < b, the deflection decreases to a certain point also non-
monotonically. The graph at n>12 (Figure 4), which is a continuation of the graph in Figure 3, shows that 
all curves have minima. Moreover, it turns out that the found dependence in the accepted formulation 
(with an increase in the number of panels, the lengths of the panels decrease and the loads on individual 
nodes decrease) has an oblique asymptote. You can calculate the angle of inclination from finding the 
limit: 

2 2lim '/ (2 ) / (2 ( )).
n

n b bh h L b h
→

 = − + +   

The solution (6) for the relative shift 0' / ( )EF P L =   also has an asymptote, but it is a horizontal 

asymptote:  

lim '/ / (3( )).
n

n L b h
→

 = +   
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Fig. 3 - Dependence of the relative deflection on the number of panels, 2 8n    

1 — 2m;2 — 4m;3 — 5m;4 — 6m;5 — 7 m;  180 m;  10 mb b b b b L h b= = = = = = + =   

 
Fig. 4 - Dependence of the relative deflection on the number of panels, 12 18n    

Figure 5 shows the dependence of the deflection on the value b at a constant total height of the 

truss 10 mh b+ = . The characteristic of these dependencies is the presence of a fairly clearly defined 

minimum and the self-intersection of the curves at n =9 and n =10. The intersection point means that 
trusses of the same length, but with different panel lengths, have the same deflections.  
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Fig. 5 - Dependence of the relative deflection on the height b. 100 m;  10 mL h b= + =   

4 Conclusions 

The main results of the work are as follows. 
1. A scheme of a statically definable planar regular truss with a sprengel-type lattice is proposed. 
2. The dependence for the deflection of the truss and the horizontal displacement of the movable 

support under the action of a uniformly distributed load is obtained. 
3. The features of the distribution of forces on the truss rods for different ratios of the dimensions 

of the grid elements in the height of the structure are shown. 
4. The existence of linear asymptotic solutions for the deflection and shift of the support by the 

number of panels is shown. 
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